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Abstract Based on the three-dimensional (3D) piezoelectricity, two asymptotic formulations for the cylindrical
bending vibration of simply supported, functionally graded (FG) piezoelectric cylindrical shells with open-circuit
and closed-circuit surface conditions are presented. The normal electric displacement and electric potential are
prescribed to be zero on the lateral surfaces. In the present asymptotic formulations the material properties are
regarded to be heterogeneous through the thickness coordinate. Afterwards, they are further specified to be constant in
single-layer shells, to be layerwise constant in multilayered shells and to obey an identical exponent-law distribution
in FG shells. The method of multiple time scales is used to eliminate the secular terms arising from the regular
asymptotic expansion. The orthonormality and solvability conditions for various orders are derived. The recursive
property among the motion equations of various order problems is shown. The present asymptotic formulations
are applied to several illustrative examples. The accuracy and the rate of convergence of the present asymptotic
solutions are evaluated. The coupled electro–elastic effect and the influence of the material-property gradient index
on the free-vibration behavior of FG piezoelectric shells are studied.

Keywords 3D solutions · Analytical modeling · Piezoelectric shells · Smart materials · Vibration

1 Introduction

In recent years, a new class of functionally graded (FG) piezoelectric materials has being widely used as smart
structures in engineering applications. Since these materials possess natural coupling effects between the electric and
elastic fields, they have successfully been used to form self-monitoring and self-controlling devices. The subjects
on the exact three-dimensional (3D) analysis of FG piezoelectric structures have therefore attracted the researchers’
attention.

The class of multilayered piezoelectric plates and shells can be regarded as a special case of FG piezoelectric
plates and shells where the material properties of these structures are layer-wise constant distributions through
the thickness coordinate. Based on a discrete-layer theory, Hussein and Heyliger [1] presented exact solutions for
the free-vibration behavior of laminated piezoelectric cylinders with both open-circuit and closed-circuit surface
conditions. Natural frequencies and their corresponding modal field variables through the thickness coordinate for
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various piezoelectric laminates were studied. The previous discrete-layer theory has also been used to investigate
the axisymmetric free vibration of homogeneous and laminated piezoelectric cylinders by Kharouf and Heyliger
[2] as well as the free vibration of laminated circular piezoelectric plates and disks by Heyliger and Ramirez
[3]. Shu [4] presented an accurate theory for the cylindrical bending vibration of laminated piezoelectric plates.
Heyliger and Brooks [5, 6] studied exact solutions for the cylindrical bending static and dynamic behaviors of
multilayered piezoelectric plates using a similar approach as that of Pagano [7]. Vel et al. [8] analyzed the cylindrical
bending vibration of multilayered plates with embedded or surface-mounted piezoelectric patches. Vel and Batra [9]
presented exact solutions for the 3D deformations of simply supported sandwich plates with embedded piezoelectric
shear actuators. Based on the state space formalism, Lü et al. [10] studied the cylindrical bending vibration of
angle-ply laminates using the propagator (or transfer) matrix method. Effects of variation of ply angle on the
vibration properties of laminates have been investigated. Jin and Batra [11] developed a finite-element code using
eight-node isoparametric elements for the static and free-vibration analyses of multilayered piezoelectric plates.
Effects of electro-mechanical coupling and open-circuit versus closed-circuit surface conditions on deformations
and natural frequencies have been reported. Comprehensive reviews of theoretical analyses and numerical modeling
for piezoelectric laminates have been made by Tang et al. [12], Saravanos and Heyliger [13], Gopinathan et al. [14]
and Chee et al. [15].

The articles dealing with the exact 3D analysis of FG piezoelectric plates and shells are not many in comparison
with those of multilayered piezoelectric plates and shells. Ramirez et al. [16] presented approximate 3D solution
for the static analysis of FG elastic anisotropic plates using a discrete-layer approach. Chen and Ding [17] and Wu
and Liu [18] studied the free vibration and static responses of a FG piezoelectric rectangular plate using the state
space method, respectively. In their analysis, a successive approximation method firstly proposed by Soldatos and
Hadjigeorgiou [19] was adopted for dividing the FG plate into certain layers with constant material coefficients.
Thus, the state equations with variable coefficients can be approximately reduced to ones with constant coefficients
in each layer. This discretization scheme on the material properties makes the state space method feasible for the
3D analysis of FG piezoelectric plates. Using the successive-approximation method, Shuvalov and Soldatos [20]
presented the 3D static and dynamic analysis of radially inhomogeneous tubes with arbitrary cylindrical anisotropy.
In [20], the successive approximation method introduced in [19] has also been demonstrated to be practically an
exact method in the sense that it can approximate the exact solution of relevant problems to any desired accuracy.
A sextic formalism was developed for 3D elastodynamics of cylindrically anisotropic radially inhomogeneous
materials by Shuvalov [21]. Vel and Batra [22] presented 3D exact solutions for the free and forced vibrations of
simply supported, FG rectangular plates using the power-series method where the material properties are estimated
by either Mori–Tanaka [23] or self-consistent schemes [24]. Zhong and Yu [25] presented 3D solutions of the free
and forced vibrations of a simply supported, FG piezoelectric rectangular plate with open-circuit, closed-circuit
and two additional mixed surface conditions using the state space method.

An alternative analytical approach, namely the asymptotic approach apart from the aforementioned methods of
state space and power series, has been proposed and successfully applied to obtain exact solutions of laminated
composite plates by Wang and Tarn [26] and Tarn and Wang [27, 28] and of laminated composite shells by Wu and
his colleagues [29–32]. The asymptotic approach has also been extensively applied for the analysis of laminated
piezoelectric plates by Cheng and Batra [33, 34] and of laminated piezoelectric shells by Wu and his colleagues
[35, 36]. Since these asymptotic formulations may account for arbitrary variations of material properties through
the thickness coordinate without using a discretization scheme for FG structures, we aim at developing two different
asymptotic formulations for cylindrical bending vibration of FG piezoelectric cylindrical shells with open-circuit
and closed-circuit surface conditions, respectively. Asymptotic analysis for dynamic response of inhomogeneous
plates and shells is not just a matter of applying a standard perturbation method. This will lead not only to equations
that are too cumbersome to be useful but also nonuniform expansions containing secular terms. Hence, in the present
paper, the method of multiple time scales developed by Nayfeh [37] and Nayfeh and Mook [38] has been used to
eliminate the secular terms arising from the regular asymptotic expansions. These present asymptotic formulations
have been applied for several cylindrical bending vibration problems of multilayered and FG piezoelectric plates
and shells in illustrative examples.

123



Cylindrical bending vibration 97

2 Basic equations of piezoelectricity

We consider a simply supported, FG orthotropic piezoelectric cylindrical shell with a very large length as compared
to the other two dimensions. The configuration of a typical cross-section of the shell is shown in Fig. 1. A cylindrical
coordinate system with variables x, θ, r is used and located on the middle surface of the shell; 2h and R stand for
the total thickness and the curvature radii to the middle surface of the shell, respectively; θα denotes the angle
between two edges in the circumferential direction; aθ is the mid-surface dimension of the shell and aθ = Rθα .
The radial coordinate r is also represented as r = R + ζ where ζ is the thickness coordinate measured from the
middle surface of the shell.

The constitutive equations of piezoelectric material are given by

σi = ci jε j − eki Ek, Dl = el jε j + ηlk Ek, (2.1, 2.2)

where σi , ε j (i, j = 1–6) denote the contracted notation for the stress and strain components, respectively.
Further Dl and Ek (l, k = 1–3) denote the components of the electric displacement and electric field, respec-
tively; ci j , ei j (i, j = 1–6) and ηlk(l, k = 1–3) are the elastic, piezoelectric and dielectric coefficients, respectively,
relative to the geometrical axes of the cylindrical shell. The material properties are considered as heterogeneous
through the thickness (i.e., ci j (ζ ), el j (ζ ) and ηlk(ζ )). For an orthotropic solid, the previous material coefficients are
given by

a b c

Material A 

Material B 

a single-layer shell a two-layered shell a functionally graded shell 

Fig. 1 The geometry and coordinates of a typical cross-section of a cylindrical strip
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c =

⎡
⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

⎤
⎥⎥⎥⎥⎥⎥⎦
, e =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 e31

0 0 e32

0 0 e33

0 e24 0
e15 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, η =

⎡
⎣
η11 0 0
0 η22 0
0 0 η33

⎤
⎦ .

For cylindrical bending problems, all the field variables are functions of the circumferential and thickness coordinates
only, not of the axial coordinate. Hence, all the relative derivatives of the field variables with respect to the axial
coordinate are identical to zero in the present formulation.

The strain–displacement relationships are given by

εx = 0, εθ = 1

r
uθ,θ + 1

r
ur , εr = ur,r , (2.3–2.5)

γθr = uθ,r − 1

r
uθ + 1

r
ur,θ , γxr = ux,r , γxθ = 1

r
ux,θ , (2.6–2.8)

in which ux , uθ and ur are the displacement components.
The stress equations of motion in the cylindrical coordinates are given by

τxθ,θ + τxr + rτxr,r = ρrux,t t , σθ,θ + rτθr,r + 2τθr = ρruθ,t t , τθr,θ + rσr,r + σr − σθ = ρrur,t t ,

(2.9–2.11)

where ρ denotes the mass density of the shell; t is the time variable. The charge equation of the FG piezoelectric
material without electric charge density is

∇ · D = 0, (2.12)

where ∇ stands for the nabla operator. The relationship between the electric field and electric potential is expressed
by

E = −∇
, (2.13)

where 
 is the electric potential.
The boundary conditions of the problem are specified as follows:

on the lateral surfaces, the traction stresses and normal electric displacement (or electric potential) are prescribed:

�τxr τθr σr Dr� = [0 0 0 0] on r = R ± h (open-circuit conditions); (2.14a)

�τxr τθr σr 
� = [0 0 0 0] on r = R ± h (closed-circuit conditions). (2.14b)

The edge boundary conditions of the shell are considered as fully simple supports and suitably grounded. They
are given by

σθ = ux = ur = 
 = 0, at θ = 0 and θ = θα. (2.15)

3 Nondimensionalization

A set of dimensionless coordinates and elastic-field variables is defined as

x1 = x/R ∈, x2 = θ/∈, x3 = ζ/h and r = R + ζ ;
u1 = ux/R ∈, u2 = uθ/R ∈, u3 = ur/R;
σ1 = σx/Q, σ2 = σθ/Q, τ12 = τxθ/Q;
τ13 = τxr/Q ∈, τ23 = τθr/Q ∈, σ3 = σr/Q ∈2;

(3.1a–d)

where ∈2= h/R; Q denotes a reference elastic modulus.
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Cylindrical bending vibration 99

Two different sets of dimensionless electric field variables are defined as

D1 = Dx/∈( j−1)e, D2 = Dθ/∈( j−1)e, D3 = Dr/e, φ = 
e/∈ j RQ, (3.2a–d)

where e denotes a reference piezoelectric modulus. In the present formulations, the superscript j is taken as zero
which corresponds to open-circuit conditions where the normal electric displacement and transverse stresses are
zero on the lateral surfaces; j = 2 corresponds to the closed-circuit conditions where the electric potential and
transverse stresses are zero on the lateral surfaces.

The dimensionless multiple time scales are defined by

tk = ∈2k

R

√
Q

ρ0
t (k = 0, 1, 2, etc.), (3.3)

where ρ0 denotes a reference mass density.
To simplify the manipulation of the whole mathematical system, we select transverse stresses (τxr , τθr , σr ),

elastic displacements (ux , uθ , ur ), normal electric displacement (Dr ) and electric potential (
) as primary field
variables. The other variables are secondary field variables and can be expressed in terms of primary field variables.

By eliminating the secondary field variables from (2.1)–(2.13), and then introducing the set of dimensionless
coordinates and variables (3.1)–(3.3) in the resulting equations, we can rewrite the basic equations as follows:

u3,3 = − ∈2 ā2u2,2− ∈2 ā2u3+ ∈4 η̃σ3+ ∈2 ẽD3, u1,3 =∈2 S̃55τ13, (3.4, 3.5)

u2,3 = −u3,2 + ∈2 (1 − x3∂3)u2 + ∈2 S̃44τ23 + ∈4 (x3 S̃44)τ23 − ∈ j (S̃44ẽ24)φ,2, (3.6)

D3,3 = − ∈ j D2,2− ∈2 (1 + x3∂3)D3, (3.7)

τ13,3 = −Q̄66u1,22− ∈2 (1 + x3∂3)τ13 + ρ1

[
∂2

∂t2
0

+ 2 ∈2 ∂2

∂t0∂t1
+ ∈4

(
2
∂2

∂t0∂t2
+ ∂2

∂t2
1

)
+ · · ·

]
u1, (3.8)

τ23,3 = −Q̄22u2,22 − Q̄22u3,2− ∈2 (2 + x3∂3)τ23− ∈2 ã2σ3,2 − b̃2 D3,2

+ρ1

[
∂2

∂t2
0

+ 2 ∈2 ∂2

∂t0∂t1
+ ∈4

(
2
∂2

∂t0∂t2
+ ∂2

∂t2
1

)
+ · · ·

]
u2, (3.9)

σ3,3 = Q̄22u2,2 + Q̄22u3 − τ23,2− ∈2 (−ã2 + 1 + x3∂3)σ3 + b̃2 D3

+ρ2

[
∂2

∂t2
0

+ 2 ∈2 ∂2

∂t0∂t1
+ ∈4

(
2
∂2

∂t0∂t2
+ ∂2

∂t2
1

)
+ · · ·

]
u3, (3.10)

φ,3 = − ∈(2− j) b̄2u2,2− ∈(2− j) b̄2u3+ ∈(4− j) ẽσ3− ∈(2− j) c̃D3, (3.11)

where

[âi ãi āi ]T =
(

e33e3i + η33ci3

e2
33 + η33c33

)
[γθ 1 1/γθ ]T , γθ = 1+ ∈2 x3,

[b̂i b̃i b̄i ]T =
(

e33ci3 − c33e3i

e2
33 + η33c33

)(
e

Q

)
[γθ 1 1/γθ ]T , S̃55 = Q

c55
, S̃44 = Q

c44
,

ẽi j = ei j

e
, η̃ = η33 Q

e2
33 + η33c33

, ẽ = e33e

e2
33 + η33c33

, c̃ = c33e2

(e2
33 + η33c33)

Q,

[Q̂i j Q̃i j Q̄i j ]T = (Qi j/Q)[γθ 1 1/γθ ]T , Qi j = ci j − ã j ci3 −
(

b̃ j Q/e
)

e3i ,

ρ1 = ρhγθ/ρ0 R, ρ2 = ργθ/ρ0.
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The secondary field variables, such as in-surface stresses and electric displacements, can be expressed in terms
of the primary variables as follows:

σ1 = Q̄12u2,2 + Q̄12u3 + ∈2 ã1σ3 + b̃1 D3, σ2 = Q̄22u2,2 + Q̄22u3+ ∈2 ã2σ3 + b̃2 D3, (3.12, 3.13)

τ12 = Q̄66u1,2, D1 =∈(2− j) s̃55ẽ15τ13, D2 =∈(2− j) s̃44ẽ24τ23 −
[(

s̃44ẽ2
24 + η22 Q

e2

)/
γθ

]
φ,2. (3.14–3.16)

In dimensionless form the boundary conditions of the problem are specified as follows:
On the lateral surface the transverse load and normal electric displacement (or electric potential) are prescribed,
[
τ13 τ23 σ3 D3

] = [0 0 0 0
]

on x3 = ±1 (open-circuit conditions); (3.17a)
[
τ13 τ23 σ3 φ

] = [0 0 0 0
]

on x3 = ±1 (closed-circuit conditions). (3.17b)

At the edges, the following quantities are satisfied:

σ2 = u1 = u3 = φ = 0 at x2 = 0 and x2 = θα/
√

h/R. (3.18)

4 Asymptotic expansions

Since (3.4)–(3.11) contain terms involving only even powers of ∈, we therefore asymptotically expand the primary
variables in the powers ∈2 as follows:

f (x2, x3,∈, t0, t1, . . .) = f (0)(x2, x3, t0, t1, . . .) + ∈2 f (1)(x2, x3, t0, t1, . . .) + ∈4 f (2)(x2, x3, t0, t1, . . .)+ · · · .
(4.1)

4.1 Shells with open-circuit surface conditions ( j = 0)

Substituting (4.1) in (3.4)–(3.11), letting j = 0 and collecting coefficients of equal powers of ∈, we obtain the
following sets of recurrence equations for various order problems.

4.1.1 Leading-order problem

After performing nondimensionalization and asymptotic expansion manipulation, we obtain the basic differential
equations for the leading-order problem given by

u(0)3 ,3 = 0, φ
(0)
,3 = 0, u(0)1 ,3 = 0, u(0)2 ,3 = −u(0)3 ,2 − (s̃44ẽ24)φ

(0)
,2, (4.2–4.5)

D(0)
3 ,3 = −D(0)

2 ,2 =
[(

s̃44ẽ2
24 + η22 Q

e2

)/
γθ

]
φ
(0)
,22, τ

(0)
13 ,3 = −Q̄66u(0)1 ,22 + ρ1

∂2u(0)1

∂t2
0

, (4.6, 4.7)

τ
(0)
23 ,3 = −Q̄22u(0)2 ,22 − Q̄22u(0)3 ,2 − b̃2 D(0)

3 ,2 + ρ1
∂2u(0)2

∂t2
0

,

σ
(0)
3 ,3 = Q̄22u(0)2 ,2 + Q̄22u(0)3 − τ

(0)
23 ,2 + b̃2 D(0)

3 + ρ2
∂2u(0)3

∂t2
0

.

(4.8, 4.9)
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Cylindrical bending vibration 101

4.1.2 Higher-order problems

The basic differential equations for the higher-order problems are obtained and given by

u(k)3 ,3 = −ā2u(k−1)
2 ,2 − ā2u(k−1)

3 + ẽD(k−1)
3 + η̃σ

(k−2)
3 ,

φ
(k)
,3 = −b̄2u(k−1)

2 ,2 − b̄2u(k−1)
3 − c̃D(k−1)

3 + ẽσ (k−2)
3 , (4.10, 4.11)

u(k)1 ,3 = s̃55τ
(k−1)
13 , u(k)2 ,3 = −u(k)3 ,2−(s̃44ẽ24)φ

(k)
,2 + (1 − x3∂3)u

(k−1)
2 + s̃44τ

(k−1)
23 + (x3s̃44)τ

(k−2)
23 , (4.12, 4.13)

D(k)
3 ,3 = −D(k)

2 ,2−(1 + x3∂3)D
(k−1)
3 =

[(
s̃44ẽ2

24+
η22 Q

e2

)/
γθ

]
φ
(k)
,22−(s̃44ẽ24)τ

(k−1)
23 ,2−(1 + x3∂3)D

(k−1)
3 ,

(4.14)

τ
(k)
13 ,3 = −Q̄66u(k)1 ,22 − (1 + x3∂3)τ

(k−1)
13 +

[
ρ1
∂2

∂t2
0

u(k)1 + 2ρ1
∂2

∂t0∂t1
u(k−1)

1 + · · ·

+ρ1

(
∂2

∂t0∂tk
+ ∂2

∂t1∂tk−1
+ · · · + ∂2

∂tk∂t0

)
u(0)1

]
, (4.15)

τ
(k)
23 ,3 = −Q̄22u(k)2 ,22 − Q̄22u(k)3 ,2 − b̃2 D(k)

3 ,2 − (2 + x3∂3)τ
(k−1)
23 − ã2σ

(k−1)
3 ,2

+
[
ρ1
∂2

∂t2
0

u(k)2 + 2ρ1
∂2

∂t0∂t1
u(k−1)

2 + · · · + ρ1

(
∂2

∂t0∂tk
+ ∂2

∂t1∂tk−1
+ · · · + ∂2

∂tk∂t0

)
u(0)2

]
, (4.16)

σ
(k)
3 ,3 = Q̄22u(k)2 ,2 + Q̄22u(k)3 − τ

(k)
23 ,2 + b̃2 D(k)

3 − (−ã2 + 1 + x3∂3)σ
(k−1)
3

+
[
ρ2
∂2

∂t2
0

u(k)3 + 2ρ2
∂2

∂t0∂t1
u(k−1)

3 + · · · + ρ2

(
∂2

∂t0∂tk
+ ∂2

∂t1∂tk−1
+ · · · + ∂2

∂tk∂t0

)
u(0)3

]
, (4.17)

where the subscript k = 1, 2, 3, etc.
For the previous leading-order (k = 0) and higher-order (k = 1, 2, 3, etc) problems, the secondary field variables,

such as in-surface stresses and electric displacements, can be expressed in terms of the primary variables as follows:

σ
(k)
1 = Q̄12u(k)2 ,2 + Q̄12u(k)3 + b̃1 D(k)

3 + ã1σ
(k−1)
3 , σ

(k)
2 = Q̄22u(k)2 ,2 + Q̄22u(k)3 + b̃2 D(k)

3 + ã2σ
(k−1)
3 ,

(4.18, 4.19)

τ
(k)
12 = Q̄66u(k)1, 2, D(k)

1 = S̃55ẽ15τ
(k−1)
13 , D(k)

2 = −
[(

S̃44ẽ2
24 + η22 Q

e2

)/
γθ

]
φ
(k)
,2 + S̃44ẽ24τ

(k−1)
23 .

(4.20.–4.22)

The transverse stresses and electric normal displacement on the lateral surfaces are given as[
τ
(k)
13 τ

(k)
23 σ

(k)
3 D(k)

3

]
= [0 0 0 0] on x3 = ±1. (4.23)

Along the edges, the following conditions must be satisfied:

σ
(k)
2 = u(k)1 = u(k)3 = φ

(k)
3 = 0 at x2 = 0 and x2 = θα/

√
h/R. (4.24)

4.2 Shells with closed-circuit surface conditions ( j = 2)

Substituting (4.1) in (3.4)–(3.11), letting j = 2 and collecting coefficients of equal powers of ∈, we obtain the
following sets of recurrence equations for various order problems.
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4.2.1 Leading-order problem

The basic differential equations for the leading-order problem given by

φ
(0)
,3 = −b̄2u(0)2 ,2 − b̄2u(0)3 − c̃D(0)

3 , u(0)2 ,3 = −u(0)3 ,2, D(0)
3 ,3 = 0. (4.25–4.27)

The other basic equations related to the first derivative of the primary field variables (u(0)1 , u(0)3 , τ
(0)
13 , τ

(0)
23 , σ

(0)
3 )

with respect to the thickness coordinate remain identical to those equations in the cases of open-circuit conditions
(i.e., (4.2), (4.4), (4.7)–(4.9)).

4.2.2 Higher-order problems

The basic differential equations for the higher-order problems are obtained and given by

φ
(k)
,3 = −b̄2u(k)2 ,2 − b̄2u(k)3 − c̃D(k)

3 + ẽσ (k−1)
3 , (4.28)

u(k)2 ,3 = −u(k)3 ,2 − (S̃44ẽ24)φ
(k−1)

,2 + (1 − x3∂3)u
(k−1)
2 + S̃44τ

(k−1)
23 + (x3 S̃44)τ

(k−2)
23 , (4.29)

D(k)
3 ,3 = −D(k−1)

2 ,2 − (1 + x3∂3)D
(k−1)
3 = −S̃44ẽ24τ

(k−1)
23 ,2 +

[(
S̃44ẽ2

24 + η22 Q

e2

)/
γθ

]
φ
(k−1)

,22

−(1 + x3∂3)D
(k−1)
3 . (4.30)

The other differential equations are the same as (4.10), (4.12) and (4.15)–(4.17).
For the previous leading-order and higher-order problems, the expressions of in-surface stresses in terms of the

primary variables are the same as (4.18)–(4.20); the expressions of electric displacements are given by

D(k)
1 = s̃55ẽ15τ

(k)
13 , D(k)

2 = −
[(

s̃44ẽ2
24 + η22 Q

e2

)/
γθ

]
φ
(k)
,2 + s̃44ẽ24τ

(k)
23 . (4.31, 4.32)

The transverse stresses and electric potential on the lateral surfaces are given by
[
τ
(k)
13 τ

(k)
23 σ

(k)
3 φ(k)

]
= [0 0 0 0

]
on x3 = ±1. (4.33)

The edge conditions remain the same as those for open-circuit conditions (4.24).

5 Successive integration

5.1 Shells with open-circuit surface conditions ( j = 0)

5.1.1 Leading-order problem

Examining the sets of asymptotic equations, it is found that the analysis can be carried out by integrating those
equations through the thickness direction. We therefore integrate (4.2)–(4.5) to obtain

u(0)3 = u0
3(x2, t0, t1, . . .), φ(0) = φ0(x2, t0, t1, . . .), (5.1, 5.2)

u(0)1 = u0
1(x2, t0, t1, . . .), u(0)2 = u0

2(x2, t0, t1, . . .)− x3 u0
3 ,2 − Ẽ24

00(x3)φ
0
,2, (5.3, 5.4)

where u0
1, u0

2, u0
3 and φ0 represent the displacements and electric potential on the middle surface; also, Ẽkl

00 (x3) =∫ x3
0 (s̃ll ẽkl) dη.
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By observing (5.4), we note that the in-surface displacement at the leading-order level is dependent upon the
electric potential. Based on the previous study, we may consider (5.1)–(5.4) as the generalized kinematics assump-
tions of the coupled classical shell theory (CST) for piezoelectric shells with open-circuit surface conditions.

Proceeding to derive the equations of motion at leading-order, we successively integrate (4.6)–(4.9) through the
thickness coordinate to obtain

D(0)
3 =

[∫ x3

−1

(
s̃44ẽ2

24 + η22 Q

e2

)(
1

γθ

)
dη

]
φ0

,22 = D0
3, (5.5)

τ
(0)
13 = −

(∫ x3

−1
Q66dη

)
u0

1 ,22 +
(∫ x3

−1
ρ1dη

)
∂2u0

1

∂t2
0

, (5.6)

τ
(0)
23 = −

∫ x3

−1

[
Q22

(
u0

2 ,22 − ηu0
3 ,222 − Ẽ24

00φ
0
,222

)
+ Q22u0

3,2 + b̃2 D0
3,2

]
dη

+
(∫ x3

−1
ρ1dη

)
∂2u0

2

∂t2
0

−
(∫ x3

−1
ρ1ηdη

)
∂2u0

3 ,2

∂t2
0

−
(∫ x3

−1
ρ1 Ẽ24

00dη

)
∂2φ0

,2

∂t2
0

, (5.7)

σ
(0)
3 =

∫ x3

−1

[
Q22

(
u0

2 ,2 − ηu0
3 ,22 − Ẽ24

00φ
0
,22

)
+ Q22u0

3 + b̃2 D0
3

]
dη

+
∫ x3

−1
(x3 − η)

[
Q22

(
u0

2 ,222 − ηu0
3 ,2222 − Ẽ24

00φ
0
,2222

)
+ Q22u0

3 ,22 + b̃2 D0
3 ,22

]
dη

+
(∫ x3

−1
ρ2dη

)
∂2u0

3

∂t2
0

−
(∫ x3

−1
(x3−η) ρ1dη

)
∂2u0

2 ,2

∂t2
0

+
(∫ x3

−1
(x3−η) ρ1ηdη

)
∂2u0

3 ,22

∂t2
0

+
(∫ x3

−1
(x3−η) ρ1 Ẽ24

00dη

)
∂2φ0

,22

∂t2
0

. (5.8)

After imposing the lateral boundary conditions at x3 = 1, we obtain the governing equations for the leading-order
problem as follows:

K11u0
1 = −I10

∂2u0
1

∂t2
0

, K22u0
2 + K23u0

3 + K24φ
0 = −I10

∂2u0
2

∂t2
0

+ I11
∂2u0

3 ,2

∂t2
0

+ I 24
10

∂2φ0
,2

∂t2
0

, (5.9, 5.10)

K32u0
2 + K33u0

3 + K34φ
0 = −I20

∂2u0
3

∂t2
0

− I11
∂2u0

2 ,2

∂t2
0

+ I12
∂2u0

3 ,22

∂t2
0

+ I 24
11

∂2φ0
,22

∂t2
0

, K44φ
0 = 0, (5.11–5.12)

in which

K11 = − Ā66∂22, K22 = − Ā22∂22, K23 = B̄22∂222 − Ā22∂2,

K24 =
(

Ē24
22 − F̃24

32

)
∂222, K32 = −B̄22∂222 + Ā22∂2, K33 = D̄22∂2222 − 2B̄22∂22 + Ā22,

K34 =
(

Ḡ24
22 − H̃24

32

)
∂2222 −

(
Ē24

22 − F̃24
32

)
∂22, K44 = F̄24∂22;
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⎡
⎣

Âi j

Ãi j

Ai j

⎤
⎦ =

∫ 1

−1

⎡
⎣

Q̂i j

Q̃i j

Qi j

⎤
⎦ dx3,

⎡
⎣

B̂i j

B̃i j

Bi j

⎤
⎦ =

∫ 1

−1
x3

⎡
⎣

Q̂i j

Q̃i j

Qi j

⎤
⎦ dx3,

⎡
⎣

D̂i j

D̃i j

Di j

⎤
⎦ =

∫ 1

−1
x2

3

⎡
⎣

Q̂i j

Q̃i j

Qi j

⎤
⎦ dx3,

⎡
⎢⎣

Êkl
i j

Ẽkl
i j

E
kl
i j

⎤
⎥⎦ =

∫ 1

−1

⎡
⎣

Q̂i j

Q̃i j

Qi j

⎤
⎦
∫ x3

0
(s̃ll ẽkl)dηdx3,

⎡
⎢⎣

F̂kl
3i

F̃ kl
3i

F
kl
3i

⎤
⎥⎦ =

∫ 1

−1

⎡
⎣

b̂i

b̃i

bi

⎤
⎦
∫ x3

−1

(
1

γθ

)(
s̃ll ẽ

2
kl + ηkk Q

e2

)
dηdx3,

⎡
⎣

F̂3i

F̃3i

F3i

⎤
⎦ =

∫ 1

−1

⎡
⎣

b̂i

b̃i

bi

⎤
⎦ dx3,

⎡
⎢⎣

F̂kl

F̃kl

F
kl

⎤
⎥⎦ =

∫ 1

−1

(
s̃ll ẽ

2
kl + ηkk Q

e2

)⎡
⎣
γθ
1

1/γθ

⎤
⎦ dx3,

⎡
⎢⎣

Ĝkl
i j

G̃kl
i j

G
kl
i j

⎤
⎥⎦ =

∫ 1

−1
x3

⎡
⎣

Q̂i j

Q̃i j

Qi j

⎤
⎦
∫ x3

0
(s̃ll ẽkl)dηdx3,

⎡
⎢⎣

Ĥ kl
3i

H̃ kl
3i

H
kl
3i

⎤
⎥⎦ =

∫ 1

−1
x3

⎡
⎣

b̂i

b̃i

bi

⎤
⎦
∫ x3

−1

(
1

γθ

)(
s̃ll ẽ

2
kl + ηkk Q

e2

)
dηdx3,

⎡
⎣

Ĥ3i

H̃3i

H3i

⎤
⎦ =

∫ 1

−1
x3

⎡
⎣

b̂i

b̃i

bi

⎤
⎦ dx3, (i, j = 1, 2, 6) and (k, l) = (2, 4) or (1, 5);

I10 =
∫ 1

−1
ρ1dx3, I11 =

∫ 1

−1
ρ1x3dx3, I12 =

∫ 1

−1
ρ1x2

3 dx3,

I 24
10 =

∫ 1

−1
ρ1 Ẽ24

00(x3)dx, I 24
11 =

∫ 1

−1
ρ1x3 Ẽ24

00(x3)dx3, I20 =
∫ 1

−1
ρ2dx3.

The equations of motion of the leading-order problem (5.9)–(5.12) with the edge boundary conditions (4.24)
constitute a well-posed eigenvalue problem which can be readily solved. Once u0

1, u0
2, u0

3, and φ0 have been
determined, the leading-order solutions of the other modal variables of the electric and mechanical fields can be
obtained by (4.18)–(4.22) and (5.1)–(5.8).

5.1.2 Higher-order problems

Proceeding to order ε2k (k = 1, 2, 3, etc) and integrating (4.10)–(4.13) through the thickness coordinate, we obtain

uk
3 = uk

3(x2, to, t1, t2, . . .)+ ϕ3k(x2, x3, t0, t1, t2, . . .),

φ(k) = φk(x2, to, t1, t2, . . .)+ ϕ4k(x2, x3, t0, t1, t2, . . .), (5.13, 5.14)

u(k)1 = uk
1(x2, to, t1, t2, . . .)+ ϕ1k(x2, x3, t0, t1, t2, . . .),

u(k)2 = uk
2(x2, to, t1, t2, . . .)− x3uk

3 ,2 − Ẽ24
00(x3)φ

k
,2 + ϕ2k(x2, x3, t0, t1, t2, . . .), (5.15, 5.16)

where uk
1, uk

2, uk
3 and φk represent the modifications to the modal elastic displacements and electric potential on the

middle surface; ϕ1k = 0;ϕ2k, ϕ3k and ϕ4k are the relevant functions and their explicit expressions are given in the
Appendix.

After integrating (4.14)–(4.17) through the thickness coordinate, using (5.13)–(5.16) and the lateral boundary
conditions (4.23) and following a similar derivation as for the leading-order problem, we obtain the governing
equations for the higher-order problems as follows:

K11uk
1 = f1k(x2, 1, t0, t1, . . .)− I10

∂2uk
1

∂t2
0

(5.17)

K22uk
2 + K23uk

3 + K24φ
k = f2k(x2, 1, t0, t1, . . .)− I10

∂2uk
2

∂t2
0

+ I11
∂2uk

3 ,2

∂t2
0

+ I 24
10

∂2φk
,2

∂t2
0

, (5.18)
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K32uk
2 + K33uk

3 + K34φ
k = f3k(x2, 1, t0, t1, . . .)+ ∂ f2k(x2, 1, t0, t1, . . .)

∂x2
− I20

∂2uk
3

∂t2
0

− I11
∂2uk

2 ,2

∂t2
0

+ I12
∂2uk

3 ,22

∂t2
0

+ I 24
11

∂2φk
,22

∂t2
0

, (5.19)

K44φ
k = f4k(x2, 1, t0, t1, . . .), (5.20)

where f1k = 0; f2k, f3k and f4k are the nonhomogenous terms that can be calculated from the lower-order solutions.
The explicit expressions of flk(l = 2, 3, 4) are given in the Appendix.

With the appropriate edge boundary conditions, the higher-order modifications for the natural frequencies, their
corresponding eigenvectors (i.e., uk

1, uk
2, uk

3 and φk) and other modal variables can be readily obtained.
It is noted that the governing equations pertaining to the higher-order problems are the same as those of the leading-

order problem, except for the nonhomogenous terms. In view of the recursive property, a solution methodology
applied for solving the leading-order problem can be repeatedly applied for solving the higher-order problems.
Hence, the present asymptotic solutions can be obtained in a hierarchic manner.

5.2 Shells with closed-circuit surface conditions ( j = 2)

5.2.1 Leading-order problem

Following a derivation similar to that of Sect. 5.1 and performing successive integration of those basic differential
equations through the thickness direction (i.e., (4.2), (4.4), (4.26) and (4.27)), we obtain

u(0)3 = u0
3(x2, t0, t1, . . .), u(0)1 = u0

1(x2, t0, t1, . . .), u(0)2 = u0
2(x2, t0, t1, . . .)− x3u0

3,2, (5.21–5.23)

D(0)
3 = D0

3(x2, t0, t1 . . .), (5.24)

where u0
1, u0

2, u0
3 and D0

3 represent the displacements and normal electric displacement on the middle surface.
Equations (5.21)–(5.24) may be considered as the generalized kinematics assumptions of the coupled CST for

piezoelectric shells with closed-circuit surface conditions.
Integrating the basic differential equations relative to the transverse stresses (4.7)–(4.9) and electric potential

(4.25) through the thickness coordinate and using the lateral boundary conditions on x3 = ±1, we obtain

K11u0
1 = −I10

∂2u0
1

∂t2
0

, K22u0
2 + K23u0

3 + L24 D0
3 = −I10

∂2u0
2

∂t2
0

+ I11
∂2u0

3,2

∂t2
0

, (5.25, 5.26)

K32u0
2 + K33u0

3 + L34 D0
3 = −I11

∂2u0
2,2

∂t2
0

+ I12
∂2u0

3,22

∂t2
0

− I20
∂2u0

3

∂t2
0

, L42u0
2 + L43u0

3 + L44 D0
3 = 0,

(5.27, 5.28)

in which Ki j were defined as previously for open-circuit conditions, and

L24 = −F̃32∂2, L34 = −H̃32∂22 + F̃32, L42 = −F̃32∂2,

L43 = H̄32∂22 − F̄32, L44 = −E0, E0 =
∫ 1

−1
c̃ dx3.

The equations of motion (5.25)–(5.28) for the leading-order problem combined with the edge boundary conditions
(4.24) constitute a well-posed eigenvalue problem which can be readily solved. Once u0

1, u0
2, u0

3 and D0
3 have been

determined, the leading-order solutions of other variables of the electric and mechanical fields can be obtained as
before.
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5.2.2 Higher-order problems

Proceeding to order ∈2k (k = 1, 2, 3, etc) and integrating (4.10), (4.12), (4.29) and (4.30) through the thickness
coordinate, we readily obtain

u(k)3 = uk
3(x2, t0, t1, . . .)+ ψ3k(x2, x3, t0, t1, . . .), D(k)

3 = Dk
3(x2, t0, t1, . . .)+ ψ4k(x2, x3, t0, t1, . . .),

(5.29, 5.30)

u(k)1 = uk
1(x2, t0, t1, . . .)+ ψ1k(x2, x3, t0, t1, . . .), u(k)2 = uk

2(x2, t0, t1, . . .)− x3uk
3,2 + ψ2k(x2, x3, t0, t1, . . .),

(5.31, 5.32)

where uk
1, uk

2, uk
3 and Dk

3 represent the modifications to the modal elastic displacements and electric displacement
on the middle surface;ψ1k = 0;ψ2k, ψ3k andψ4k are the relevant functions and their explicit expressions are given
in the Appendix.

After integrating the basic differential equations through the thickness coordinate and using the lateral boundary
conditions, we obtain the governing equations for the higher-order problems as follows:

K11uk
1 = g1k(x2, 1, t0, t1, . . .)− I10

∂2uk
1

∂t2
0

,

K22uk
2 + K23uk

3 + L24 Dk
3 = g2k(x2, 1, t0, t1 . . .)− I10

∂2uk
2

∂t2
0

+ I11
∂2uk

3,2

∂t2
0

,

(5.33, 5.34)

K32uk
2 + K33uk

3 + L34 Dk
3 = g3k(x2, 1, t0, t1, . . .)+∂g2k(x2, 1, t0, t1, . . .)

∂x2
− I11

∂2uk
2,2

∂t2
0

+ I12
∂2uk

3,22

∂t2
0

−I20
∂2uk

3

∂t2
0

,

(5.35)

L42uk
2 + L43uk

3 + L44 Dk
3 = g4k(x2, 1, t0, t1, . . .), (5.36)

where g1k = 0; g2k, g3k and g4k are the nonhomogenous terms which can be calculated from the lower-order
solutions. Explicit expressions for glk(l = 2, 3, 4) are given in the Appendix.

With the appropriate edge boundary conditions, the higher-order modifications (i.e., uk
1, uk

2, uk
3 and Dk

3) and the
other modal variables can be readily obtained using the same solution methodology as was used for the leading-order
problem.

6 Applications to benchmark problems

Cylindrical bending vibration problems of simply supported, multilayered and functionally graded piezoelectric
cylindrical shells (Fig. 1) with open-circuit and closed-circuit surface conditions are studied using the present
asymptotic formulations.

6.1 Shells with open-circuit surface conditions (j=0)

The governing equations of the leading-order problem ((5.9)–(5.12)) can be readily solved by letting

u0
1 =

∞∑
n=1

u0
1n sin ñx2 cos(ωt0 − ϑ), u0

2 =
∞∑

n=1

u0
2n cos ñx2 cos(ωt0 − ϑ), (6.1–6.2)

u0
3 =

∞∑
n=1

u0
3n sin ñx2 cos(ωt0 − ϑ), φ0 =

∞∑
n=1

φ0
n sin ñx2 cos(ωt0 − ϑ), (6.3–6.4)
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where ñ = n/
√

h/R and n is a positive integer; ω denotes the circular frequency of the motion. The phase angle ϑ
is a function of the time scales (t1, t2, t3, etc), but not of t0.

Substituting (6.1)–(6.4) in (5.9)–(5.12) gives
⎡
⎢⎢⎢⎣

k11 0 0 0

0 k22 k23 k24

0 k32 k33 k34

0 0 0 k44

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0
1n

u0
2n

u0
3n

φ0
n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= ω2

⎡
⎢⎢⎢⎣

I10 0 0 0

0 I10 −ñ I11 −ñ I 24
10

0 −ñ I11 (I20 + ñ2 I12) ñ I 24
11

0 0 0 0

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0
1n

u0
2n

u0
3n

φ0
n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (6.5)

where

k11 = ñ2 Ā66, k22 = ñ2 Ā22, k23 = −ñ3 B̄22 − ñ Ā22,

k24 = −ñ3(Ē24
22 − F̃24

32 ), k32 = −ñ3 B̄22 − ñ Ā22, k33 = ñ4 D̄22 + 2ñ B̄22 + Ā22,

k34 = ñ4
(

Ḡ24
22 − H̃24

32

)
+ ñ2

(
Ē24

22 − F̃24
32

)
, k44 = −ñ2 F̄24.

The electric potential φ0
n can be determined from (6.5) and is given by

φ0
n = 0 (6.6)

According to (6.5)–(6.6), we can rewrite (6.5) in the form⎡
⎢⎣

k11 0 0

0 k22 k23

0 k32 k33

⎤
⎥⎦

⎧⎪⎨
⎪⎩

u0
1n

u0
2n

u0
3n

⎫⎪⎬
⎪⎭

= ω2

⎡
⎢⎣

I10 0 0

0 I10 −ñ I11

0 −ñ I11 (I20 + ñ2 I12)

⎤
⎥⎦

⎧⎪⎨
⎪⎩

u0
1n

u0
2n

u0
3n

⎫⎪⎬
⎪⎭
. (6.7)

Equation (6.7) is an eigenvalue problem. A nontrivial solution of (6.7) exists if the determinant of the coefficient
matrix vanishes. Hence, the natural frequencies at leading order for a fixed n can be obtained from∣∣∣∣∣∣∣

k11 − ω2 I10 0 0

0 k22 − ω2 I10 k23 + ω2ñ I11

0 k32 + ω2ñ I11 k33 − ω2(I20 + ñ2 I12)

∣∣∣∣∣∣∣
= 0. (6.8)

The modal displacements are normalized to render the asymptotic solution for various orders unique. They are
given by

[(u0
1n+ ∈2 u1

1n+ ∈4 u2
1n + · · · ) (u0

2n+ ∈2 u1
2n+ ∈4 u2

2n + · · · ) (u0
3n+ ∈2 u1

3n+ ∈4 u2
3n + · · · )]

[(u0
1n+ ∈2 u1

1n+ ∈4 u2
1n + · · · ) (u0

2n+ ∈2 u1
2n+ ∈4 u2

2n + · · · ) (u0
3n+ ∈2 u1

3n+ ∈4 u2
3n + · · · )]T = 1. (6.9)

The orthonormality conditions at each level are

∈0-order: (u0
1n)

2 + (u0
2n)

2 + (u0
3n)

2 = 1; (6.10)

∈2-order: (u0
1n)

2 + (u0
2n)

2 + (u0
3n)

2 = 1, u0
1nu1

1n + u0
2nu1

2n + u0
3nu1

3n = 0; (6.11)

∈4-order: (u0
1n)

2 + (u0
2n)

2 + (u0
3n)

2 = 1, u0
1nu1

1n + u0
2nu1

2n + u0
3nu1

3n = 0;
(u1

1n)
2 + 2u0

1nu2
1n + (u1

2n)
2 + 2u0

2nu2
2n + (u1

3n)
2 + 2u0

3nu2
3n = 0; etc.

(6.12)

At the ∈0-order level, the normalized eigenvectors corresponding to ωi (i = 1, 2, 3) for fixed n are written as
{(u0

1n)i (u0
2n)i (u0

3n)i }T . Once they have been determined, the corresponding modal variables of the elastic and
electric fields at leading-order can then be calculated.

Carrying on the solution to ∈2-order, we find that the nonhomogeneous terms for fixed values of n are

f21(x2, 1) =
(

f̂21(1)
∂ϑi

∂t1
+ f̃21(1)

)
cos ñx2 cos(ωi t0 − ϑi ), (6.13)

f31(x2, 1) =
(

f̂31(1)
∂ϑi

∂t1
+ f̃31(1)

)
sin ñx2 cos(ωi t0 − ϑi ), (6.14)
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f41(x2, 1) =
(

f̂41(1)
∂ϑi

∂t1
+ f̃41(1)

)
sin ñx2 cos(ωi t0 − ϑi ), (6.15)

where f̂ j1 and f̃ j1( j = 2, 3, 4) are the relevant coefficients.
In view of the recurrence of the equations, the ∈2-order solution can be obtained by letting

u1
1 = u1

1n sin ñx2 cos(ωi t0 − ϑi ), u1
2 = u1

2n cos ñx2 cos(ωi t0 − ϑi ), (6.16, 6.17)

u1
3 = u1

3n sin ñx2 cos(ωi t0 − ϑi ), φ1 = φ1
n sin ñx2 cos(ωi t0 − ϑi ). (6.18, 6.19)

Substituting (6.13)–(6.15) and (6.16)–(6.19) in (5.17)–(5.20) gives
⎡
⎢⎢⎢⎣

k11 − I10ω
2
i 0 0 0

0 k22 − I10ω
2
i k23 + ñ I11ω

2
i k24 + ñ I 24

10ω
2
i

0 k32 + ñ I11ω
2
i k33 − (I20 + ñ2 I12)ω

2
i k34 − ñ2 I 24

11ω
2
i

0 0 0 k44

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1
1n

u1
2n

u1
3n

φ1
n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0

f̂21(1)
∂ϑi

∂t1
+ f̃21(1)

[ f̂31(1)− ñ f̂21(1)]∂ϑi

∂t1
+ [ f̃31(1)− ñ f̃21(1)]

f̃41(1)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (6.20)

Following a solution procedure similar to that of the leading-order level, we obtain

φ1
n = f̃41(1)

k44
. (6.21)

Equation (6.21) can then be rewritten as

⎡
⎢⎣

k11−I10ω
2
i 0 0

0 k22−I10ω
2
i k23 + ñ I11ω

2
i

0 k32 + ñ I11ω
2
i k33 − (I20 + ñ2 I12

)
ω2

i

⎤
⎥⎦

⎧⎪⎨
⎪⎩

u1
1n

u1
2n

u1
3n

⎫⎪⎬
⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0

f̂21(1)
∂ϑi

∂t1
+ h̃21(1)

[
f̂31(1)−ñ f̂21(1)

] ∂ϑi

∂t1
+
[
h̃31(1)−ñ f̃21(1)

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
,

(6.22)

where h̃21(1) = f̃21(1)− (k24 + ñ I 24
10ω

2
i

)
φ1

n , h̃31(1) = f̃31(1)− (k34 − ñ2 I 24
11ω

2
i

)
φ1

n .
The solvability condition for (6.22) is given by
(

u0
2n

)
i

{
f̂21(1)

∂ϑi

∂t1
+ h̃21(1)

}
+
(

u0
3n

)
i

{[
f̂31(1)− ñ f̂21(1)

] ∂ϑi

∂t1
+
[
h̃31(1)− ñ f̃21(1)

]}
= 0. (6.23)

Equation (6.22) is solvable if and only if the solvability condition (6.23) is satisfied. Collecting the terms of
∂ϑi/∂t1, we may rewrite Eq. (6.23) as
{(

u0
2n

)
i

f̂21(1)+
(

u0
3n

)
i

[
f̂31(1)− ñ f̂21(1)

]} ∂ϑi

∂t1
+
{(

u0
2n

)
i

h̃21(1)+
(

u0
3n

)
i

[
h̃31(1)−ñ f̃21(1)

]}
= 0. (6.24)

Since the coefficients of (∂ϑi/∂t1) in (6.24) are constants, the dependence of ϑi upon t1 can then be determined as

ϑi = −λi t1 + ϑ (t2, t3, . . .), (6.25)

where the λi are certain constants which are given as λi =
(
u0

2n

)
i h̃21(1)+

(
u0

3n

)
i

[
h̃31(1)−ñ f̃21(1)

]

(
u0

2n

)
i f̂21(1)+

(
u0

3n

)
i

[
f̂31(1)−ñ f̂21(1)

] .

With (6.25) and the relation t1 =∈2 t0 = (h/R)t0, the time functions of all field variables are now expressed in
terms of cos

[
(ω + λh/R)t0 − ϑ

]
. Therefore, the natural frequencies at the ∈2-order level have been modified to

ωi + λi
h

R
(i = 1, 2, 3). (6.26)
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Substituting (6.25) in (6.22) yields
⎡
⎢⎣

k11 − I10ω
2
i 0 0

0 k22 − I10ω
2
i k23 + ñ I11ω

2
i

0 k32 + ñ I11ω
2
i k33 − (I20 + ñ2 I12

)
ω2

i

⎤
⎥⎦

⎧⎪⎨
⎪⎩

u1
1n

u1
2n

u1
3n

⎫⎪⎬
⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

0

− f̂21(1)λi + h̃21(1)

−
[

f̂31(1)− ñ f̂21(1)
]
λi +

[
ĥ31(1)− ñ f̃21(1)

]

⎫⎪⎪⎬
⎪⎪⎭
. (6.27)

The variables of u1
1n , u1

2n and u1
3n can be determined from (6.27) and the modifications of the other modal

variables of the ∈2-order are subsequently determined as before. The solution process can be repeatedly applied for
various order problems and the asymptotic solutions can be obtained hierarchically.

6.2 Shells with closed-circuit surface conditions ( j = 2)

The governing equations of the leading-order problem ((5.25)–(5.28)) can also be solved by letting u0
1, u0

2, and u0
3,

be of the same form as (6.1)–(6.3) and

D0
3 =

∞∑
n=1

D0
3n sin ñx2 cos(ωt0 − ϑ). (6.28)

Substituting (6.1)–(6.3) and (6.28) in (5.25)–(5.28) gives
⎡
⎢⎢⎢⎣

k11 0 0 0

0 k22 k23 l24

0 k32 k33 l34

0 l42 l43 l44

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0
1n

u0
2n

u0
3n

D0
3n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= ω2

⎡
⎢⎢⎢⎣

I10 0 0 0

0 I10 −ñ I11 0

0 −ñ I11
(
I20 + ñ2 I12

)
0

0 0 0 0

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0
1n

u0
2n

u0
3n

D0
3n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (6.29)

where ki j are given in (6.5) and

l24 = −ñ F̃32, l34 = ñ2 H̃32 + F̃32, l42 = ñF32, l43 = −ñ2 H32 − F32, l44 = −E0.

The normal electric displacement D0
3n can be determined from the fourth equation in (6.29) and is given by

D0
3n = −

(
l42u0

2n + l43u0
3n

)

l44
. (6.30)

According to (6.30), we can rewrite (6.29) in the form
⎡
⎢⎣

k11 0 0

0 k22 k23

0 k32 k33

⎤
⎥⎦

⎧⎪⎨
⎪⎩

u0
1n

u0
2n

u0
3n

⎫⎪⎬
⎪⎭

= ω2

⎡
⎢⎣

I10 0 0

0 I10 −ñ I11

0 −ñ I11
(
I20 + ñ2 I12

)

⎤
⎥⎦

⎧⎪⎨
⎪⎩

u0
1n

u0
2n

u0
3n

⎫⎪⎬
⎪⎭
, (6.31)

where k11 = k11, k22 = k22 − l24l42
l44

, k23 = k23 − l24l43
l44

, k32 = k32 − l34l42
l44

, k33 = k33 − l34l43
l44

. The natural
frequencies of the leading order for fixed n can be obtained from
∣∣∣∣∣∣
k11 − ω2 I10 0 0
0 k22 − ω2 I10 k23 + ω2ñ I11

0 k32 + ω2ñ I11 k33 − ω2
(
I20 + ñ2 I12

)

∣∣∣∣∣∣
= 0. (6.32)

At the ∈0-order level, the normalized eigenvectors corresponding to ωi (i = 1, 2, 3) for fixed n are written as{(
u0

1n

)
i

(
u0

2n

)
i

(
u0

3n

)
i

}T
. Once they have been determined, the corresponding modal variables of elastic and

electric fields at the leading-order level can be calculated as before.
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Carrying on the solution to ∈2-order, we find that the nonhomogeneous terms for fixed n are

g21(x2, 1) =
(

ĝ21(1)
∂ϑi

∂t1
+ g̃21(1)

)
cos ñx2 cos(ωi t0 − ϑi ), (6.33)

g31(x2, 1) =
(

ĝ31(1)
∂ϑi

∂t1
+ g̃31(1)

)
sin ñx2 cos(ωi t0 − ϑi ), (6.34)

g41(x2, 1) =
(

ĝ41(1)
∂ϑi

∂t1
+ g̃41(1)

)
sin ñx2 cos(ωi t0 − ϑi ), (6.35)

where ĝ j1 and g̃ j1 ( j = 2, 3, 4) are the relevant coefficients.

In view of the recurrence of the equations, the ∈2-order solution can be obtained by letting u1
1n , u1

2n and u1
3n be

of the same form as (6.16)–(6.18) and

D1
3 = D1

3n sin ñx2 cos (ωi t0 − ϑi ). (6.36)

Substituting (6.16)–(6.18) and (6.36) in (5.33)–(5.36) gives
⎡
⎢⎢⎣

k11 − I10ω
2
i 0 0 0

0 k22 − I10ω
2
i k23 + ñ I11ω

2
i l24

0 k32 + ñ I11ω
2
i k33 − (I20 + ñ2 I12

)
ω2

i l34

0 l42 l43 l44

⎤
⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1
1n

u1
2n

u1
3n

D1
3n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0

ĝ21(1)
∂ϑi

∂t1
+ g̃21(1)

[
ĝ31(1)− ñĝ21(1)

] ∂ϑi

∂t1
+ [g̃31(1)− ñg̃21(1)

]

g̃41(1)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (6.37)

Following a solution procedure similar to that of the leading-order level, we obtain

D1
3n = g̃41(1)

l44
− I42u1

2n

l44
− I43u1

3n

l44
, (6.38)

Equation (6.37) can then be rewritten as⎡
⎢⎣

k11 − I10ω
2
i 0 0

0 k22 − I10ω
2
i k23 + ñ I11ω

2
i

0 k32 + ñ I11ω
2
i k33 − (I20 + ñ2 I12

)
ω2

i

⎤
⎥⎦

⎧⎪⎨
⎪⎩

u1
1n

u1
2n

u1
3n

⎫⎪⎬
⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0

ĝ21(1)
∂ϑi

∂t1
+ q̃21(1)

[
ĝ31(1)− ñĝ21(1)

] ∂ϑi

∂t1
+ [q̃31(1)− ñg̃21(1)

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (6.39)

where q̃21(1) = g̃21(1)− l24 g̃41(1)
I44

and q̃31 = g̃31(1)− l34 g̃41(1)
l44

. The solvability condition for (6.39) is given by
(

u0
2n

)
i

{
ĝ21(1)

∂ϑi

∂t1
+ q̃21(1)

}
+
(

u0
3n

)
i

{[
ĝ31(1)− ñĝ21(1)

] ∂ϑi

∂t1
+ [q̃31(1)− ñg̃21(1)

]} = 0. (6.40)

Equation (6.39) is solvable if and only if the solvability condition (6.40) is satisfied. Collecting the terms of
∂ϑi/∂t1, we may rewrite Eq. (6.40) in the form
{(

u0
2n

)
i

ĝ21(1)+
(

u0
3n

)
i

[
ĝ31(1)− ñĝ21(1)

]} ∂ϑi

∂t1
+
{(

u0
2n

)
i
q̃21(1)+

(
u0

3n

)
i

[
q̃31(1)− ñg̃21(1)

]} = 0. (6.41)
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Since the coefficients of (∂ϑi/∂t1) in (6.41) are constants, The dependence of ϑi , upon t1 can be determined as

ϑi = −λi t1 + ϑ i (t2, t3, . . .), (6.42)

where λi =
(
u0

2n

)
i q̃21(1)+

(
u0

3n

)
i [q̃31(1)−ñg̃21(1)](

u0
2n

)
i ĝ21(1)+

(
u0

3n

)
i [ĝ31(1)−ñĝ21(1)]

.

With (6.42) and the relation t1 =∈2 t0 = (h/R)t0, the time functions of all field variables are now expressed in
terms of cos

[
(ω + λh/R) t0 − ϑ

]
. Therefore, the natural frequencies at the ∈2-order level have been modified to

ωi + λi
h
R (i = 1, 2, 3).

Substituting (6.42) into (6.39) yields
⎡
⎢⎣

k11 − I10ω
2
i 0 0

0 k22 − I10ω
2
i k23 + ñ I11ω

2
i

0 k32+ñ I11ω
2
i k33−

(
I20 + ñ2 I12

)
ω2

i

⎤
⎥⎦

⎧⎪⎨
⎪⎩

u1
1n

u1
2n

u1
3n

⎫⎪⎬
⎪⎭

=

⎧⎪⎨
⎪⎩

0

−λi ĝ21(1)+ q̃21(1)

−λi
[
ĝ31(1)− ñĝ21(1)

]+ [q̃31(1)−ñg̃21(1)
]

⎫⎪⎬
⎪⎭
. (6.43)

The variables of u1
1n , u1

2n and u1
3n can be determined from (6.43) and the modifications of the other modal variables

of the ∈2-order are subsequently determined as before. The solution process can be repeatedly applied for various
order problems and the asymptotic solutions can be obtained hierarchically.

7 Illustrative examples

The cylindrical bending vibrations of multilayered and FG piezoelectric cylindrical shells are considered using the
present asymptotic formulations. The material properties of those shells are described as follows:

Type 1—multilayered piezoelectric cylindrical shells.
The cylindrical bending vibration of multilayered piezoelectric shells can be regarded as a special case of the present
subject where the material-property variations of the shells through the thickness coordinate are layerwise Heaviside
functions and are given by

mi j (ζ ) =
N L∑
k=1

m(k)
i j

[
H(ζ − ζk)− H(ζ − ζk+1)

]
, (7.1)

where mi j refer to material coefficients of ci j , ei j and ηi j ; H(ζ ) is the Heaviside function and ζk is the distance
measured from the middle surface of the shell to the bottom surface of the kth layer.

Type 2—functionally graded piezoelectric shells.
For a Type 2 shell, the material properties are assumed to obey the identical exponent law varied exponentially with
the thickness coordinate and are given by

mi j = m(b)
i j eα[(ζ+h)/2h], (7.2)

where the superscript b in parentheses denotes the bottom surface; α is the material-property gradient index which
represents the degree of the material gradient along the thickness.

7.1 Multilayered piezoelectric plates

The available exact solutions of cylindrical bending vibration problems of [A/B] two-layered piezoelectric plates
[5] are used to validate the present asymptotic formulations where the total thickness and the in-plane dimension

123



112 C.-P. Wu, Y.-H. Tsai

are 2h and L . By letting 1/R = 0 and aθ = L , we may reduce the present asymptotic formulations of piezoelectric
cylindrical shells to those of piezoelectric plates. For comparison purposes, the geometric parameters of the two-
layered plates and the material properties of each layer are identical to those given in the literature [5]. Both layers
are of equal thickness and the total thickness is taken as 0.01 m. The elastic, piezoelectric and dielectric properties of
piezoceramic materials A and B are given in Table 1. Table 2 shows the present asymptotic results of fundamental
frequencies for [A/B] two-layered piezoelectric plates with either open-circuit or closed-circuit surface conditions
where the values of aθ /2h are taken as 4, 10, 50 and 100. It is shown that the present asymptotic solutions converge
rapidly. The convergent solutions yield at the ∈6-order level in the cases of thick plates (aθ /2h = 4), at the ∈4-order
level in the cases of moderately thick plates (aθ /2h = 10) and at the ∈2-order level in the cases of thin plates
(aθ /2h = 100). The present convergent solutions are observed from Table 2 to be in excellent agreement with the
available exact solutions [5]. The non-piezoelectricity results given in parentheses are obtained by letting ei j = 0.
The effect of piezoelectricity on the fundamental frequencies of two-layered piezoelectric plates is also examined. It
is shown that the fundamental frequencies of piezoelectric plates are higher than those of non-pioezoelectric plates.
The effect of piezoelectricity does make the plates stiffer. In addition, the fundamental frequencies of piezoelectric
plates with open-circuit surface conditions are slightly larger than those of piezoelectric plates with closed-circuit
surface conditions. The deviation for the fundamental frequencies of plates with open-circuit and closed-circuit
surface conditions decreases, as the plate becomes thinner.

Table 3 shows the natural frequencies of [A/B] two-layered piezoelectric plates with two different surface
conditions where the wave number n is taken as 1, 2, 3, 4, 5 and aθ /2h = 10. Again, the present asymptotic
solutions are shown to converge rapidly and to be in good agreement with the solutions obtained from a 2D accurate
theory by Shu [4]. The natural frequencies of piezoelectric plates with open-circuit surface conditions are slightly
larger than those of piezoelectric plates with closed-circuit surface conditions for various vibration modes. The
deviation for the fundamental frequencies of the plates with open-circuit and closed-circuit surface conditions
increases, as the wave number n becomes larger.

Table 1 Elastic,
piezoelectric and dielectric
properties of piezoelectric
materials

ε0 = 8.854 × 10−12 F/m

Material A [5] Material B [5] PZT-4 [25]

E1 (GPa) 81.3 136.0 c11 (GPa) 139.0

E2 81.3 136.0 c22 139.0

E3 64.5 116.0 c33 115.0

υ12 0.329 0.204 c12 77.8

υ13 0.432 0.201 c13 74.3

υ23 0.432 0.201 c23 74.3

G23 25.6 55.2 c44 25.6

G13 25.6 55.2 c55 25.6

G12 30.6 56.5 c66 30.6

e31
(
C/m2) −5.20 −5.35 e31

(
C/m2) −5.2

e32 −5.20 −5.35 e32 −5.2

e33 15.08 15.78 e33 15.1

e24 12.72 12.29 e24 12.7

e15 12.72 12.29 e15 12.7

η11/ε0 1,475 1,730 η11
(
C2/Nm2

)
6.46 × 10−9

η22/ε0 1,475 1,730 η22 6.46 × 10−9

η33/ε0 1,300 1,700 η33 5.62 × 10−9

ρ/ρ0 1.0 1.0 ρ
(
kg/m3

)
7,600
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Table 2 Fundamental frequencies ω for the flexural modes of two-layered piezoelectric plates (n = 1)

Surface aθ /2h Present solutions 3D exact solution
conditions

∈0 ∈2 ∈4 ∈6 ∈8 [5]

Open 4 0.6139×107

(0.5817×107)
0.5694×107

(0.5347×107)
0.5742×107

(0.5402×107)
0.5737×107

(0.5396×107)
0.5737×107

(0.5396×107)
0.5706×107

(NA)

10 1.0033×106

(0.9511×106)
0.9907×106

(0.9377×106)
0.9909×106

(0.9380×106)
0.9909×106

(0.9380×106)
0.9909×106

(0.9380×106)
NA (NA)

50 0.4030×105

(0.3820×105)
0.4028×105

(0.3818×105)
0.4028×105

(0.3818×105)
0.4028×105

(0.3818×105)
0.4028×105

(0.3818×105)
0.3995×105

(NA)

100 1.0075×104

(0.9551×104)
1.0074×104

(0.9550×104)
1.0074×104

(0.9550×104)
1.0074×104

(0.9550×104)
1.0074×104

(0.9550×104)
NA (NA)

Closed 4 0.6087×107

(0.5817×107)
0.5620×107

(0.5347×107)
0.5674×107

(0.5402×107)
0.5667×107

(0.5395×107)
0.5668×107

(0.5396×107)
0.5649×107

(NA)

10 0.9951×106

(0.9511×106)
0.9817×106

(0.9377×106)
0.9820×106

(0.9380×106)
0.9820×106

(0.9380×106)
0.9820×106

(0.9380×106)
NA (NA)

50 0.3997×105

(0.3820×105)
0.3995×105

(0.3818×105)
0.3995×105

(0.3818×105)
0.3995×105

(0.3818×105)
0.3995×105

(0.3818×105)
0.3981×105

(NA)

100 0.9993×104

(0.9551×104)
0.9992×104

(0.9550×104)
0.9992×104

(0.9550×104)
0.9992×104

(0.9550×104)
0.9992×104

(0.9550×104)
NA (NA)

Table 3 Natural frequencies ω for the flexural modes of two-layered piezoelectric plates (aθ /2h = 10)

Surface n Present solutions 2D accurate theory
conditions

∈0 ∈2 ∈4 ∈6 ∈8 [4]

Open 1 1.0033×106

(0.9511×106)
0.9907×106

(0.9377×106)
0.9909×106

(0.9380×106)
0.9909×106

(0.9380×106)
0.9909×106

(0.9380×106)
NA (NA)

2 0.3964×107

(0.3757×107)
0.3774×107

(0.3555×107)
0.3788×107

(0.3571×107)
0.3787×107

(0.3570×107)
0.3787×107

(0.3570×107)
NA (NA)

3 0.8744×107

(0.8284×107)
0.7873×107

(0.7365×107)
0.7998×107

(0.7506×107)
0.7980×107

(0.7487×107)
0.7982×107

(0.7489×107)
NA (NA)

4 0.1514×108

(0.1433×108)
0.1274×108

(0.1182×108)
0.1324×108

(0.1237×108)
0.1315×108

(0.1228×108)
0.1316×108

(0.1228×108)
NA (NA)

5 0.2290×108

(0.2167×108)
0.1795×108

(0.1651×108)
0.1919×108

(0.1782×108)
0.1902×108

(0.1774×108)
0.1896×108

(0.1757×108)
NA (NA)

Closed 1 0.9951×106

(0.9511×106)
0.9817×106

(0.9377×106)
0.9820×106

(0.9380×106)
0.9820×106

(0.9380×106)
0.9820×106

(0.9380×106)
0.9848×106

(0.9372×106)

2 0.3931×107

(0.3757×107)
0.3730×107

(0.3555×107)
0.3746×107

(0.3571×107)
0.3745×107

(0.3570×107)
0.3745×107

(0.3570×107)
0.3733×107

(0.3559×107)

3 0.8669×107

(0.8284×107)
0.7759×107

(0.7365×107)
0.7895×107

(0.7506×107)
0.7876×107

(0.7486×107)
0.7878×107

(0.7488×107)
0.7789×107

(0.7445×107)

4 0.1500×108

(0.1433×108)
0.1252×108

(0.1182×108)
0.1304×108

(0.1236×108)
0.1296×108

(0.1228×108)
0.1296×108

(0.1227×108)
0.1271×108

(0.1218×108)

5 0.2269×108

(0.2167×108)
0.1764×108

(0.1651×108)
0.1883×108

(0.1780×108)
0.1880×108

(0.1773×108)
0.1862×108

(0.1755×108)
0.1817×108

(0.1745×108)
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7.2 Functionally graded piezoelectric cylindrical shells

The cylindrical bending vibration of FG piezoelectric cylindrical shells with two different surface conditions is
considered in Table 4 and Figs. 2, 3. The material properties are assumed to obey the identical exponent law varied
exponentially with the thickness coordinate and are given in (7.2). The material properties of PZT-4 [25] are used as
the reference material properties (Table 1) and placed at the bottom surface (i.e., c(b)i j , e(b)i j , η(b)i j where the superscript
b in parentheses denotes the bottom surface.). The ratio of material properties between top and bottom surfaces is
given as

c(t)i j

c(b)i j

= e(t)i j

e(b)i j

= η
(t)
i j

η
(b)
i j

= eα, (7.3)

where the superscript t in parentheses denotes the top surface. In the case of α = 0, the FG piezoelectric shells will
reduce to single-layer homogeneous piezoelectric shells with the material properties of the bottom surface.

Table 4 shows the fundamental frequencies of FG piezoelectric shells with two different surface conditions. The
geometric parameters of the piezoelectric shells are taken as R/aθ = 1, 5, 1,0000; 2h/aθ = 0.1, 0.2. The material-
property index is taken as α = 1.0 and 3.0. It is shown that the fundamental frequencies of FG piezoelectric shells
increses as the values of R/aθ and 2h/aθ become larger and as the value of α becomes smaller.

Table 4 Fundamental frequency parameters � for FG piezoelectric shells
(
� = 2hω

√
ρ(b)/c(b)11 /2π, n = 1

)

Surface conditions α 2h/aθ R/aθ Present solutions

∈0 ∈2 ∈4 ∈6 ∈8

Open 1 0.1 1 0.00390 0.00344 0.00345 0.00345 0.00345

5 0.00409 0.00402 0.00402 0.00402 0.00402

10,000 0.00410 0.00405 0.00405 0.00405 0.00405

Closed 1 0.1 1 0.00385 0.00338 0.00339 0.00339 0.00339

5 0.00404 0.00396 0.00396 0.00396 0.00396

10,000 0.00405 0.00399 0.00399 0.00399 0.00399

Open 1 0.2 1 0.01546 0.01305 0.01317 0.01317 0.01317

5 0.01617 0.01534 0.01539 0.01539 0.01539

10,000 0.01622 0.01549 0.01554 0.01554 0.01554

Closed 1 0.2 1 0.01524 0.01271 0.01287 0.01287 0.01287

5 0.01596 0.01499 0.01506 0.01506 0.01506

10,000 0.01601 0.01514 0.01522 0.01521 0.01521

Open 3 0.1 1 0.00326 0.00283 0.00284 0.00284 0.00284

5 0.00344 0.00337 0.00337 0.00337 0.00337

10,000 0.00345 0.00341 0.00341 0.00341 0.00341

Closed 3 0.1 1 0.00305 0.00266 0.00267 0.00267 0.00267

5 0.00322 0.00316 0.00316 0.00316 0.00316

10,000 0.00324 0.00320 0.00320 0.00320 0.00320

Open 3 0.2 1 0.01286 0.01051 0.01069 0.01068 0.01068

5 0.01361 0.01279 0.01286 0.01285 0.01285

10,000 0.01368 0.01302 0.01307 0.01307 0.01307

Closed 3 0.2 1 0.01203 0.00985 0.01003 0.01002 0.01002

5 0.01276 0.01199 0.01205 0.01205 0.01205

10,000 0.01285 0.01221 0.01226 0.01226 0.01226
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Fig. 2 The through-thickness distributions of the modal field variables in the FG piezoelectric shells with open-circuit surface conditions
and different values of the material-property gradient index

Figures 2, 3 show the distributions for modal variables of mechanical and electric fields across the thickness
coordinate for the fundamental vibration mode of a FG shell with open-circuit and closed-circuit surface conditions,
respectively. The material-property index is taken as α = −3.0, −1.5, 0, 1.5, 3.0. The geometric parameters are
2h/aθ = 0.1 and R/aθ = 5. It is observed from Figs. 3, 4 that the through-thickness distributions of mechanical
field variables for plates with open-circuit surface conditions reveal similar patterns as those for plates with closed-
circuit surface conditions. However, the through-thickness distributions of electric-field variables for plates with
open-circuit surface conditions reveal different patterns as those for plates with closed-circuit surface conditions.
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Fig. 3 The through-thickness distributions of the modal field variables in the FG piezoelectric shells with closed-circuit surface
conditions and different values of material-property gradient index

8 Concluding remarks

Based on the method of multiple time scales, we have developed two asymptotic formulations for the cylindrical
bending vibration of FG piezoelectric shells with open-circuit and closed-circuit surface conditions, respectively.
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Through a straightforward manipulation, such as nondimensionalization, asymptotic expansions, successive inte-
gration etc, we obtained two recursive sets of CST-type equations of motion for various order problems. In the
cases of open-circuit conditions, the variables of the electric potential and elastic displacements are the generalized
kinematics field variables in the equations of motion for various order problems; whereas the variables of the normal
electric displacement and elastic displacements become so for closed-circuit conditions. These formulations have
been shown to be feasible in a systematic manner. Applications of the present formulations to illustrative examples
show that the present asymptotic solutions converge rapidly and are in excellent agreement with exact solutions
available in the literature. It is noted that the natural frequencies of shells with open-circuit surface conditions are
slightly higher than those of shells with closed-circuit surface conditions. The through-thickness distributions of the
modal elastic variables reveal similar patterns for the two surface conditions; however, different patterns of those
distributions are observed for the modal electric variables.

Acknowledgements This work is supported by the National Science Council of Republic of China through Grant NSC 96-2221-
E006-265.

A Appendix

A.1 Shells with open-circuit surface conditions ( j = 0)

The relevant functions of ϕik and fik (i = 2–4, k = 1, 2, 3, . . .) in Eqs. (5.13)–(5.20) are given by

ϕ2k(x2, x3) = −x3u(k−1)
2 +

∫ x3

0

[
2u(k−1)

2 + s̃44τ
(k−1)
23 + (x3s̃44)τ

(k−2)
23 − ϕ3k,2 − (s̃44ẽ24)ϕ4k,2

]
dη,

ϕ3k(x2, x3) = −
∫ x3

0

[
ā2u(k−1)

2 ,2 + ā2u(k−1)
3 −ẽD(k−1)

3 − η̃σ
(k−2)
3

]
dη,

ϕ4k(x2, x3) = −
∫ x3

0

[
b̄2u(k−1)

2 ,2+b̄2u(k−1)
3 + c̃D(k−1)

3 − ẽσ (k−2)
3

]
dη,

f2k(x2, x3) = x3τ
(k−1)
23 +

∫ x3

−1

[
Q22ϕ2k,22 + Q22ϕ3k,2 + b̃2 f4k,2 + τ

(k−1)
23 + ã2σ

(k−1)
3 ,2

]
dη

−
[
∂2

∂t2
0

(∫ x3

−1
ρ1ϕ2kdη

)
+ ∂2

∂t0∂t1

(∫ x3

−1
2ρ1u(k−1)

2 dη

)
+ · · · +

(
∂2

∂t0∂tk
+ ∂2

∂t1∂tk−1

+ · · · + ∂2

∂tk∂t0

)(∫ x3

−1
ρ1u(0)2 dη

)]
,

f3k(x2, x3) = x3σ
(k−1)
3 −

∫ x3

−1

[
Q22ϕ2k,2 + Q22ϕ3k − b̃2 f4k + f2k,2 + ã2σ

(k−1)
3

]
dη

−
[
∂2

∂t2
0

(∫ x3

−1
ρ2ϕ3kdη

)
+ ∂2

∂t0∂t1

(∫ x3

−1
2ρ2u(k−1)

3 dη

)
+ · · ·

+
(

∂2

∂t0∂tk
+ ∂2

∂t1∂tk−1
+ · · · + ∂2

∂tk∂t0

)(∫ x3

−1
ρ2u(0)3 dη

)]
,

f4k(x2, x3) = x3 D(k−1)
3 +

∫ x3

−1

[
(s̃44ẽ24)τ

(k−1)
23 ,2 − (1/γθ )

(
s̃44ẽ24 + η22 Q

e2

)
ϕ4k,22

]
dη.
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A.2 Shells with closed-circuit surface conditions ( j = 2)

The relevant functions of ψik and gik (i = 2–4, k = 1, 2, 3, . . .) in Eqs. (5.29)–(5.36) are

ψ2k(x2, x3) = −x3u(k−1)
2 +

∫ x3

0

[
2u(k−1)

2 + s̃44τ
(k−1)
23 + (x3s̃44)τ

(k−2)
23 − ψ3k,2 − (s̃44ẽ24)ψ4k,2

]
dη,

ψ3k(x2, x3) = −
∫ x3

0

[
a2u(k−1)

2 ,2 + a2u(k−1)
3 − ẽD(k−1)

3 − η̃σ
(k−2)
3

]
dη,

ψ4k = x3 D(k−1)
3 −

∫ x3

0

[
s̃44ẽ44τ

(k−1)
23 ,2 −

(
s̃44ẽ2

24 + η22 Q

e2

)
(1/γθ )φ

(k−1)
,22

]
dη,

g2k(x2, x3) = x3τ
(k−1)
23 +

∫ x3

−1

[
Q22ψ2k,22 + Q22ψ3k,2 − b̃2 f4k,2 + τ

(k−1)
23 + ã2σ

(k−1)
3 ,2

]
dη

−
[
∂2

∂t2
0

(∫ x3

−1
ρ1ψ2kdη

)
+ ∂2

∂t0∂t1

(∫ x3

−1
2ρ1u(k−1)

2 dη

)
+ · · ·

+
(

∂2

∂t0∂tk
+ ∂2

∂t1∂tk−1
+ · · · + ∂2

∂tk∂t0

)(∫ x3

−1
ρ1u(0)2 dη

)]
,

g3k(x2, x3) = x3σ
(k−1)
3 −

∫ x3

−1

[
Q22ψ2k,2 + Q22ψ3k − b̃2 D(k)

3 + f2k,2 + ã2σ
(k−1)
3

]
dη

−
[
∂2

∂t2
0

(∫ x3

−1
ρ2ψ3kdη

)
+ ∂2

∂t0∂t1

(∫ x3

−1
2ρ2u(k−1)

3 dη

)
+ · · ·

+
(

∂2

∂t0∂tk
+ ∂2

∂t1∂tk−1
+ · · · + ∂2

∂tk∂t0

)(∫ x3

−1
ρ2u(0)3 dη

)]
,

g4k(x2, x3) =
∫ x3

−1

[
b̃2ψ2k,2 + b̃2ψ3k + c̃ψ4k − ẽσ (k−1)

3

]
dη.
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